Parametric investigation on mixing in a micromixer with two-layer crossing channels
نویسندگان
چکیده
This work presents a parametric investigation on flow and mixing in a chaotic micromixer consisting of two-layer crossing channels proposed by Xia et al. (Lab Chip 5: 748-755, 2005). The flow and mixing performance were numerically analyzed using commercially available software ANSYS CFX-15.0, which solves the Navier-Stokes and mass conservation equations with a diffusion-convection model in a Reynolds number range from 0.2 to 40. A mixing index based on the variance of the mass fraction of the mixture was employed to evaluate the mixing performance of the micromixer. The flow structure in the channel was also investigated to identify the relationship with mixing performance. The mixing performance and pressure-drop were evaluated with two dimensionless geometric parameters, i.e., ratios of the sub-channel width to the main channel width and the channels depth to the main channel width. The results revealed that the mixing index at the exit of the micromixer increases with increase in the channel depth-to-width ratio, but decreases with increase in the sub-channel width to main channel width ratio. And, it was found that the mixing index could be increased up to 0.90 with variations of the geometric parameters at Re = 0.2, and the pressure drop was very sensitive to the geometric parameters.
منابع مشابه
Numerical Investigation of Fluid Mixing in a Micro-Channel Mixer with Two Rotating Stirrers by Using the Incompressible SPH Method
Fluid mixing is a crucial and challenging process for microfluidic systems, which are widely used in biochemical processes. Because of their fast performance, active micromixers that use stirrer blades are considered for biological applications. In the present study, by using a robust and convenient Incompressible Smoothed Particle Hydrodynamics (ISPH) method, miscible mix...
متن کاملDesign and fabrication of an effective micromixer through passive method
Micromixer is a significant component of microfluidics particularly in lab-on-chip applications so that there has been a growing need for design and fabrication of micromixers with a shorter length and higher efficiency. Despite most of the passive micromixers that suffer from long mixing path and complicated geometry to increase the efficiency, our novel design suggests a highly efficient micr...
متن کاملMixing Analysis of Passive Micromixer with Unbalanced Three-Split Rhombic Sub-Channels
A micromixer with unbalanced three-split rhombic sub-channels was proposed, and analyses of the mixing and flow characteristics of this micromixer were performed in this work. Three-dimensional Navier-Stokes equations in combination with an advection-diffusion model with two working fluids (water and ethanol) were solved for the analysis. The mixing index and pressure drop were evaluated and co...
متن کاملThe effect of flow parameters on mixing degree of a three dimensional rhombus micromixer with obstacles in the middle of the mixing channel using oscillatory inlet velocities
The previous studies of authors on passive micromixers indicated that the micromixers dividing the flow to several layers, such as rhombus micromixers and micromixers with obstacles in the middle of the mixing channel, have higher mixing degree than other types. Also, using of oscillatory inlet velocities is an active method to enhance the mixing efficiency of micromixers. Therefore, in this st...
متن کاملMixing Performance of a Serpentine Micromixer with Non-Aligned Inputs
In this study, a numerical investigation on mixing and flow structure in a serpentine microchannel with non-aligned input channels was performed. The non-aligned input channels generate a vortical flow, which is formed by incoming fluid streams through tangentially aligned channels. Mixing index was evaluated to measure the degree of mixing in the micromixer. Analyses of mixing and flow field w...
متن کامل